
Automatic Music Transcription
Implementation for Guitar

Shaurya Chopra 170100108

Rishabh Dahale 17D070008

Guide: Prof. Preeti Rao

May 7, 2021

Department of Electrical Engineering

IIT Bombay

1

Abstract

This study is an attempt to solve a problem in Automatic Music Transcription (AMT) - namely,
the problem of chord detection (a subset of which is, of course, note detection).
We discuss the common approaches used in the literature, and implement the approach of multi-
pitch estimation as discussed by the authors of [1], since it works on a straightforward maximum
likelihood estimation approach, and offers performance superior to traditional methods. All equa-
tions and ideas discussed are adapted from the aforementioned paper. A step-by-step discussion
of the ideas, followed by a guide for our implementation is provided. We conclude by providing
results of our implementation, run on the Fraunhofer IDMT dataset.
This document is a detailed report encompassing the ideas behind AMT, review of literature, de-
tailed discussion of the method of multipitch estimation, results and future work. The appendix
serves as a manual for our Python implementation, with discussion of all the individual modules
and how they come together to form the transcription model.

https://www.idmt.fraunhofer.de/en/publications/datasets.html

2

List of Abbreviations

STFT Short-time Fourier Transform

NMF Non-negative Matrix Factorization

HPS Harmonic Product Spectrum

HMM Hidden Markov Model

PCP Pitch Class Profile

N Polyphony of the audio

M Maximum possible polyphony

T threshold for polyphony estimation

F0 Fundamental Frequency

θ Set of fundamental frequencies predicted in estimation

C candidate set of fundamental frequencies

M Maximum possible polyphony, or MAX POLYPHONY

fk frequency(in MIDI) of Kth observed peak

hk harmonic number (approx) of Kth observed peak

fk log-amplitude of Kth observed peak

dk distance(in MIDI) of Kth observed peak from the corresponding harmonic

p(.), P (.) probability measure

3

Contents

Automatic Music Transcription 5
1 Introduction . 5
2 Basics: Notes and Chords . 5

2.1 Chords in a Guitar . 6
3 Literature Review . 6

3.1 Non-negative Matrix Factorization . 7
3.2 Harmonic Product Spectrum (HPS) . 7
3.3 Template-based Matching . 8
3.4 Hidden Markov Models . 9
3.5 Multi-pitch Estimation . 9

4 Multipitch Estimation Overview . 9
5 The STFT . 10
6 Maximum Likelihood Estimation . 10

6.1 Greedy Search . 10
6.2 The Candidate Set . 10
6.3 Algorithm . 10

7 The Likelihood Function . 11
7.1 Peak Region Likelihood . 11
7.2 Non-peak Region Likelihood . 12

8 Polyphony Estimation . 13
9 Results . 14

9.1 Performance Metrics . 14
9.2 Frame Level Results . 15
9.3 File Level Results . 17
9.4 Preliminary Batch Level Results . 17

10 Future Work . 18

Bibliography 19

Appendix A Manual 21
1 Dataset Details . 21

1.1 Dataset 1 . 21
1.2 Dataset 2 . 22
1.3 Annotation Mapping . 23

2 Code Structure . 24
3 Common Utilities . 25

3.1 Silence Detection . 25

4

3.2 Peak Detection . 25
4 Training . 25

4.1 Extracting Data . 25
4.2 Modelling p(dk) . 26
4.3 Modelling p(ak, fk, hk) and p(fk, hk) . 26
4.4 Non-Peak Region Modelling . 26

5 Testing . 26
5.1 Candidate Generation . 26
5.2 The Frame Class . 27
5.3 Calculating Likelihoods . 27
5.4 Polyphony Estimation . 27
5.5 Putting it all together . 27

6 Running the Code . 28
6.1 Environment . 28
6.2 Configuration File . 28
6.3 Heuristics for Parameter Tuning . 29
6.4 Training the Models . 30
6.5 Testing on an Audio File . 30

5

Automatic Music Transcription

1 Introduction

Automatic Music Transcription (AMT) is the problem of converting acoustic signals into musi-
cal notation. It is an interesting and challenging problem from the field of Music Information
Retrieval(MIR). Applications of an AMT system include, but aren’t limited to an online music
education platform, music similarity identification and cover song detection - especially across
different languages for the lyrics, and chord-progression based recommender systems, that can
automatically generate accompaniment.
A comprehensive and reliable AMT system is yet to be realized, owing to the complicated nature
of both musical information itself - pitch, timbre, chords, melodies, onsets and offsets, and even
instrument specific information and playing styles - to the difficulty in extracting them from a
single acoustic signal. AMT encompasses solving various subproblems - onset and offset detec-
tion, multipitch estimation, and multi-class classification. In this work, we shall focus on the task
of chord detection for guitar music. We first discuss traditional methods used to approach this
problem, and then dive into the method of multipitch estimation, since an estimate of the various
fundamental frequencies (corresponding to semitones of an instrument) in each time frame gives
us the basic information about the notes (and hence chord) being played at each instant.

2 Basics: Notes and Chords

We first review some basics about musical notation, with some emphasis on guitar.

• A note is simply the harmonics of given fundamental frequency F0

• For most instruments, including the guitar, notes are equitempered, i.e. the F0 of notes
grows as a geometric progression of common ratio 2

1
12

• Gap between successive notes is called a semitone

• Every 12th note is labelled as the same note in a different octave, since they sound like the
same note at a higher pitch

• An octave is thus defined as a set of 12 successive notes, typically starting at the note C in
western notation.

• A musical chord is defined as a special set of superimposed notes, i.e. played together

6

• The succession of notes and chords over time forms the core in a piece of music, just like
words of a language

We note that an acoustic music signal is expected to have a very specific harmonic structure,
containing fundamentals and overtones of some finite set of notes at each time instant. Thus, one
way to think about the transcription problem is finding out exactly which notes and chords are
being played at each time instant.

2.1 Chords in a Guitar

A guitar has a very unique structure. It comprises of six strings of different thickness, labelled 1-6
with 1 being the thinnest, tuned by convention to E,B,G,D,A,E. Playing notes is straightforward.
We press down on a fret and pluck the string; each fret advances the open string note by a semitone.

Figure .1: Guitar Basics

Note that standard chords - majors and minors, are a superposition of three notes. However,
a guitar chord is always a stroke to all six strings simultaneously, with some notes repeated.

3 Literature Review

We now give a brief account of previous, and popular work on this problem, with the goal of
transcribing polyphonic music with chords and notes:

1. Non-negative Matrix Factorization (NMF)

2. Harmonic Product Spectrum (HPS)

3. Template-based Matching

4. Hidden Markov Models

5. Multi-pitch Estimation

7

Although all these classes of methods carry out unique operations, all of them work with the
short-time Fourier transform of the signal, a standard approach for audio processing tasks. That
is, we chop up acoustic signals into frames with a given window and hop length, and process one
at a time. Template matching and HMM are similar in that their approach implicity build on the
HPS. The latter, however, along with NMF and Multipitch estimation are data-driven.

3.1 Non-negative Matrix Factorization

NMF is a matrix algorithm, fist proposed by the authors of [2], and used for the AMT problem
by the authors of [3].
The idea is the following: factor the STFT matrix X = X(n, k) ∈ RM×N as X ≈ WH where
W ∈ RM×R and H ∈ RR×N . R is a hyperparameter. The approximation is in the sense of Frobe-
nius norm.
NMF has the following characteristic: Rows of H summarize rows of X and columns of W summarize
columns of X. Thus, when X is the STFT, columns of W form a ”spectral basis” of the notes
in the frame, while rows of H contain the temporal information (when the note starts and ends
within the frame, for instance).

Drawbacks

While this is a light, data-driven approach, it has a significant drawback in that it reliably performs
transcriptions only for static harmonic profiles (notes playing for a long time).

3.2 Harmonic Product Spectrum (HPS)

The HPS measures the maximum coincidence for harmonics for each spectral frames. HPS of a
spectrum X(ω) is simply a superposition (product) of K decimated versions of X(ω), and can be
calculated as:

Ŷ (ω) =
K∏
k=1

|X(kω)| (.1)

The idea behind HPS is that it only retains harmonic information by collapsing overtones onto the
fundamental, getting rid of everything else. Thus, in principle, the HPS is nothing but peaks in
the spectrum, at locations of the fundamental frequencies present in the frame. The polyphony,
too, is nothing but the number of peaks in the HPS.

8

Figure .2: HPS of E Major Chord (E + G# + B)

For speech related tasks, k is varied from 1 to K, the latter being a hyperparameter. In music,
as octaves differ in frequency by a factor of 2, harmonics not at the power of 2 should not contribute
energy to the base note. Hence the above equation is modified as follows:

Y (ω) =
K∏
k=1

|X(2kω)| (.2)

Drawbacks

Although this representation may look simple and promising, it has some shortcomings with its
representation.

Figure .2 shows the HPS calculated for a frame of E Major chord which consists of notes E,
G# and B. Due to variation in playing the notes, it can be seen that some notes are much more
emphasized than others. Moreover, some spurious peaks can be seen which can easily hinder with
the transcription task, especially polyphony estimation. In addition, while computing the HPS, the
octave information is lost as higher octaves are collapsed into lower ones making the transcription
octave free.

3.3 Template-based Matching

This class of methods works on the following idea: define a feature vector that succinctly captures
all the information relevant to detecting a chord. Once we have an appropriate feature vector,
we can define classes corresponding to each type of chord, create pre-defined templates, and then
match a probe vector to one of these templates in order to transcribe the music.

Chromagrams

The most popular feature vector for chord recognition is called a chromagram, also referred to as
a Pitch Class Profile (PCP)[4]. It builds on the idea of the harmonic product spectrum.
The representation proposed by the authors of [4] is the enhanced pitch class profile, a novel

9

improvement over the traditional PCP feature vector[5].
This feature vector uses the harmonic product spectrum, and creates (a multiple of) 12 bins, each
corresponding to a note (if 36 bins, 3 would correspond to a semitone). The energy in kth bin is

total energy in 2
k
12 to 2

k+1
12 .

Note that this feature vector is identical to the Constant-Q Transform of the spectrum, as explained
in [4]. However, we arrive at the same feature vector, building on the HPS for ease of understanding.

Drawbacks

Although this is an instrument independent method, and the templates are simply one-hot vectors
of the chord with ones at the constituent notes’ bins, noise can significantly affect the results.

3.4 Hidden Markov Models

These are analogous to classical speech recognition models[6]. The idea[7] is to form a statistical
model of a collection of random vectors O1, ..., OT representing observations, emitted by states
q1, q2,
The states form an underlying (hidden) markov chain. The observations are nothing but PCP
vectors - that is, the training input signals chopped up into frames, and converted to PCP vectors.
The markov model, with states belonging to chord classes, are trained on these using Expectation-
Maximization.
Chord recognition is done using the Viterbi algorithm, as in the case of speech recognition models.

3.5 Multi-pitch Estimation

The other main class of algorithms, and the class we focus on, is that of multi-pitch estimation.
These attempt to solve the general problem of finding the various pitches present in an audio clip
in any given frame, without knowing the structure or even the polyphony (no. of pitches). Once
we know each of the fundamental frequencies contributing to the harmonic structure of each frame
of a music signal, we can easily identify the precise notes and chords being played.
We now discuss in detail the the algorithm proposed by the authors in [1], which shall be our focus
in this work.

4 Multipitch Estimation Overview

The main idea behind detecting chords/notes in a musical piece is detecting, at any given moment,
exactly which pitches occur. Note that notes are simply sounds from a specific set of fundamental
frequencies in a geometric progression of 2

1
12 . These notes are given logarithmically increasing

numbers, called MIDI numbers, where a spacing of 1 in the MIDI scale is referred to as a semitone.
Chords are nothing but combinations of notes following certain rules.
Thus, even without knowing explicitly the rules that determine chords, it is in principle sufficient
to know the (MIDI numbers of) fundamental frequency F0 each note playing at a given time.
We now discuss in detail the multipitch estimation method proposed in [1]

10

5 The STFT

In order to process audio data, we follow the standard approach of computing the Short-time
Fourier Transform of the audio signal.

The entire signal is divided into time slices of a pre-decided size. For this, the audio signal,
sampled at SAMPLING RATE samples/sec, is multiplied with a moving window of fixed width (we
call this parameter WIN LEN) and fixed overlap HOP LEN. Then, the magnitude spectrum of each
frame is computed, and finally, normalized by energy.

X̂(n, k) =
∞∑

m=−∞

x[m]w[n−m]e−jkω0m (.3)

X(n, k) =
|X̂(n, k)|∑
n |X̂(n, k)|2

(.4)

where n refers to the frame index/position and k runs over the frequency bins of the STFT.

6 Maximum Likelihood Estimation

The authors[1] follow the following approach: set up a probabilistic model parametrized by funda-
mental frequencies, that shall then be maximized over the set of possible F0 and the fundamental
frequencies that maximize this function over a frame, are our predictions.

A detailed discussion of this novel likelihood function proposed by the authors is given in the
subsequent sections.

6.1 Greedy Search

Once the likelihood function is known (trained), instead of a brute force search, predictions are
found by a greedy iterative strategy over a candidate set of fundamental frequencies.

The idea is simple - maximization of likelihood is done over the candidate set, and possible
F0’s added one-by-one.

6.2 The Candidate Set

The missing fundamental situation (audio having overtones of a fundamental frequency but not
the fundamental itself) is not considered.

Thus, we restrict our search space to the peaks seen in the frame spectrum. The candidate set
C is defined to be those values within DEVIATION ±3% of observed peaks in the frame spectrum
(how these peaks are obtained will be discussed subsequently) with a step size STEP of 1%. Note
that this is done in order to account for improper tuning of instruments, and its effect aggregated
over all observed peaks.

6.3 Algorithm

Thus, the basic idea is the following: define a likelihood function that depends on where the peaks
occur in the frame spectrum. Then greedily iterate over a set of candidate fundamental frequencies
and select your candidates. Then, use this likelihood function to figure out the polyphony of this

11

frame, say N, and then return the N best candidates as the prediction.
A high level pseudocode of the algorithm is given below:

Algorithm 1 High Level View of Multipitch estimation

for energy normalized frame in audio do
find all peaks with amplitudes in frame spectrum
C ← candidate F0

θ ← ∅
for N=1 to MaxPolyphony do

for Each F0 ∈ C do
evaluate likelihood on θ

⋃
{F0}

F ∗0 = F0 with max likelihood
end forθ ← θ

⋃
{F ∗0 }

end for
Estimate Polyphony, N Return first N elements of θ

end for
for each frame of audio do

refine F0 estimates using neighbouring frames
end for

7 The Likelihood Function

We now discuss in detail the novel likelihood function proposed by the authors[1]. Implementation
of each of these will be discussed subsequently.
The observed power spectrum is modelled in terms of two components - the peak region and the
non-peak region. The peak region is defined as those intervals of the frequency axis which are
within a distance d of an observed peak (details of how peaks are observed can be found in 3.2.
In the implementation, we call this parameter DEVIATION and is set to ±3% (or a musical quarter-
tone.
The non-peak region is defined as the complement of the peak region.
With these definitions, we set up a parameter estimation problem as follows:

θ̂ = arg max
θ∈Θ

P (O|θ) (.5)

where θ = {F 1
0 , ..., F

N
0 }, the likelihood function P (O|θ) is broken down as follows:

P (O|θ) = Ppeakregion(O|θ)× Pnon−peakregion(O|θ) (.6)

We now look at each of these terms individually.

7.1 Peak Region Likelihood

The peak region likelihood represents the probability of occurrence of peaks given your current
predictions θ. Now, if a peak occurs at location fk with log-amplitude ak, then

Ppeakregion(O|θ) = p(f1, a1, ..., fK , aK |θ) ≈
K∏
k=1

p(fk, ak|θ) (.7)

12

assuming conditional independence of peaks given θ.
Ignoring the possibility of spurious peaks that is, each observed peak in the dataset is within a
musical semitone of a harmonic of the ground truth fundamental frequencies, we can assume that
each peak is associated with only one F0 ∈ θ. Thus,

p(fk, ak|θ) ≈ max
F0∈θ

p(fk, ak|F0) = p(fk|F0)× p(ak|fk, F0) (.8)

Now if hk =
[
2

fk−F0

12

]
is the harmonic of F0 closest to fk, ([.] denotes rounding to nearest integer;

frequencies are always expressed in MIDI) and dk = fk − F0 − 12log2hk is the distance of the
observed peak from the nearest harmonic in MIDI, then

p(fk|F0) = p(dk|F0) ≈ p(dk) (.9)

where the approximation is justified by the authors by measuring correlation between dk and F0

and finding it to be small.
p(dk) is learned from the dataset and modelled as a GMM.
Finally, we write

p(ak|fk, F0) =
p(ak, fk, hk)

p(fk, hk)
=
p(ak, fk|hk)���p(hk)

p(fk|hk)���p(hk)
(.10)

Note that the authors use models for p(ak, fk, hk) and p(fk, hk) directly. However, we break these
down even further for the following reason: ak and fk are real valued, while hk is a discrete
harmonic number. The authors use the Parzen window method to train the PDFs, while we use
GMMs (more on this in the implementation section). Using the latter on both continuous and
discrete data will not capture the correlations correctly.
Thus, as for p(dk), GMMs are trained from the dataset for p(ak, fk|hk) and p(fk|hk), that is, one
GMM for each possible harmonic hk.

7.2 Non-peak Region Likelihood

The non-peak region likelihood captures the probability of not observing a peak in non-peak region,
given the set of assumed F0. To model this, we define

Pnon−peakregion(O|θ) =
∏
F0∈θ

∏
h

1− P (eh = 1|F0) (.11)

where eh is an indicator function, that takes value 1 when the hth harmonic of F0 is observed in
the non-peak region. These probabilites are once again trained over the dataset.
A pictorial summary of the way we break down the likelihood function is as follows (note that the
boxes in green are the ones we ”train”):

13

Figure .3: Breakdown of Likelihood Function

We conclude the discussion of the likelihood function by noting that unlike other types of
models which rely on carefully chosen heuristics and functions to pick out specific information(for
instance, feature-vector based ones) the learned distributions implicitly capture information about
the instrument like its hidden envelope, timbre information and so on.

8 Polyphony Estimation

The above maximum likelihood estimation problem gives us a set of ”predicted” fundamental
frequencies that best describe a frame. However, we also need to estimate the polyphony of the
frame, namely, how many fundamental frequencies are actually there in the frame.
Polyphony estimation is closely related to overfitting - we want the least number of fundamental
frequencies that best represent the frame spectrum. In the algorithm discussed so far, however,
we have only an upper limit on the size of θ
Note: In the subproblem of chord detection of a guitar, although six strings are being played
at a time, in standard major and minor chords, you actually only have three ”independent”
fundamental frequencies, with other strings usually repeating a note. Therefore, we expect the
predicted polyphony to be 3, not 6 in guitar chord estimation.

14

Since adding each F0 to θ always (in theory) increases likelihood, we set a threshold on the change:

N = min
1≤n≤M

ns.t.∆(n) ≥ T ×∆(M) (.12)

where ∆(n) = lnL(θ̂n)− lnL(θ̂1), L denotes the likelihood function and the number in the super-
script denotes the size of θ. T is a learned threshold.

9 Results

9.1 Performance Metrics

In order to quantify performance, we first note that in the task of multipitch estimation, the
following errors are possible [8]:

• “miss”: an F0 present in the ground truth may be missed altogether

• “sub”: a ground truth F0 may be substituted for another in the prediction

• “fa”: (false alarm) an F0 present in the prediction that isn’t present in the ground truth

To this end, we define error metrics specifically aimed at identifying these scenarios, in addition
to a total error metric.
First define

• Nref (t) = number of F0 in ground truth of frame t

• Nsys(t) = number of F0 in predicted by the system for frame t

• Ncorr(t) = number of F0 correctly identified compared to the ground truth, for frame t

With this notation, we define the following error metrics (T is the total number of frames):

Etot =

∑T
t=1 max (Nref (t), Nsys(t))−Ncorr(t)∑T

t=1Nref (t)
(.13)

Esub =

∑T
t=1 min (Nref (t), Nsys(t))−Ncorr(t)∑T

t=1Nref (t)
(.14)

Emiss =

∑T
t=1 max (Nref (t), 0)−Nsys(t)∑T

t=1Nref (t)
(.15)

Efa =

∑T
t=1 max (0, Nsys(t))−Nref (t)∑T

t=1Nref (t)
(.16)

Finally, we define the usual metrics for precision, recall and accuracy as follows. Let

• TP (t) =no. of true positives (overlap with ground truth) in frame t

• FP (t) =no. of false positives (detected, but not in ground truth) in frame t

• FN(t) =no. of false negatives (in ground truth, but not detected) in frame t

15

Thus,

precision =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FP (t)
(.17)

recall =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FN(t)
(.18)

accuracy =

∑T
t=1 TP (t)∑T

t=1 TP (t) + FP (t) + FN(t)
(.19)

Octave Folding

We observed that for a significant proportion of time, the prediction of the note(s) currently
playing falls within an ”octave” error. That is, the predicted note is exactly an octave (12 MIDI
notes) away from the ground truth. This may happen primarily because of the relative strength
of harmonic peaks detected, and the greedy search strategy (a higher octave of the same note may
satisfactorily account for its peaks observed).
Thus, we tune the above error metrics to ignore octaves (done by taking modulo 12 on the predicted
and ground truth MIDI numbers) and recompute those as well. Note that for the purpose of
rudimentary chord detection, we do not require octaves, merely the set of notes.

9.2 Frame Level Results

In order to get a feel of the predictions, we run this on some test files, and compare with the ground
truth. We show the prediction for 25 contiguous frames, and contrast these with the ground truth.
The STFT is plotted for reference.

16

Monophonic Results

(a) Prediction for MIDI 40 (b) Prediction for MIDI 55

(c) Prediction for MIDI 65 (d) Prediction for MIDI 76

Figure .4: Predictions for Various Monophonic Files

We observe that for the lower MIDI numbers, the prediction overlaps with the ground truth (red
line), while for the higher ones, we observe octave errors.

Polyphonic Results

For polyphonic files, we consider guitar clips of two chords, and plot as before.

17

(a) Prediction for F Sharp Maj Chord (b) Prediction for B Maj Chord

Figure .5: Predictions for Polyphonic Files

We observe that the predicted polyphony is actually three, not six, as noted in the previous
chapter. The predictions agree with the ground truth in the relevant (i.e. the ones the algorithm
picked) octaves.

9.3 File Level Results

Since running the prediction algorithm on the entire dataset is computationally very expensive,
we first run the algorithm on a single file and observe the values of the previously defined error
metrics, with and without octave folding. The file under consideration is 1-E1-Major 00.wav,
which has six notes playing in one stroke of the E major chord, with three detected.

w/o octave folding w/ octave folding
Etot 0.81 0.39
Esub 0.27 0.21
Emiss 0.53 0.17
Efa -.053 -0.17
Precision 0.42 0.74
Recall 0.19 0.61
Accuracy 0.15 0.50

Table .1: Results on 1-E1-Major 00.wav

9.4 Preliminary Batch Level Results

An initial run on the entire batch of files (on entire dataset 1 and 2) yielded the following results:

18

w/o octave folding w/ octave folding
Precision 0.22 0.37
Recall 0.39 0.69
Accuracy 0.16 0.32

Table .2: Preliminary Results

We note that the performance improves considerably by considering octave folding.

10 Future Work

We conclude by listing out the list of possible future steps:

• Onset detection:

– combine various state of the art methods in order to distinguish between onset of a
note, a chord and the constituent notes of a chord

• Post Processing

– Use estimates of neighbouring frames to refine the estimates

– Couple with onset detection to limit predictions to intervals strictly between onsets (and
offsets)

• Training and testing for an instrument other than guitar (note that the models themselves do
not assume instrument specific information; we may, however see different results particularly
in the error metrics)

• Automatic Accompaniment Generation Problem:

– use the transcription of acoustic signals into chords and notes to feed into a Reinforce-
ment Learning based model, that generates harmonic and rhythmic support

19

Bibliography

[1] Z. Duan, B. Pardo, and C. Zhang. Multiple fundamental frequency estimation by modeling
spectral peaks and non-peak regions. IEEE Transactions on Audio, Speech, and Language
Processing, 18(8):2121–2133, 2010.

[2] Daniel Lee and Hyunjune Seung. Algorithms for non-negative matrix factorization. Adv. Neural
Inform. Process. Syst., 13, 02 2001.

[3] P. Smaragdis and J.C. Brown. Non-negative matrix factorization for polyphonic music tran-
scription. In 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(IEEE Cat. No.03TH8684), pages 177–180, 2003.

[4] Kyogu Lee. Automatic chord recognition from audio using enhanced pitch class profile. In
ICMC. Citeseer, 2006.

[5] Takuya Fujishima. Realtime chord recognition of musical sound: a system using common lisp
music. In ICMC, 1999.

[6] Ben Gold, Nelson Morgan, Dan Ellis, and Douglas O’Shaughnessy. Speech and audio signal
processing: Processing and perception of speech and music, second edition. The Journal of the
Acoustical Society of America, 132:1861–2, 09 2012.

[7] A. Sheh and D. Ellis. Chord segmentation and recognition using em-trained hidden markov
models. In ISMIR, 2003.

[8] M. Bay, A. F. Ehmann, and J. S. Downie. Evaluation of multiple-f0 estimation and tracking
systems. 2009.

Appendix A : Manual

21

Manual

We provide a step-by-step discussion of each of the modules implemented along with a brief
discussion of the associated ideas. We implement in Python. Note that files referred to are
denoted in typewriter font - for instance foo.py, and so are global parameters like SAMPLING RATE

defined in config.json.

1 Dataset Details

We use the Fraunhofer IDMT dataset. We use IDMT-SMT-GUITAR V2 which consists of 4 sub-
datasets, of which we use Datasets 1 and 2.
The samples are stored as WAV files, with annotation provided in XML format with the following
note-event parameters (the audio file is broken down into events of individual notes being played :

1. pitch: MIDI pitch value of the note

2. onsetSec: onset time of the note in seconds

3. offsetSec: offset time of the note in seconds

4. fretNumber: fret number of the guitar for the note. (0 for open string)

5. stringNumber: string number of guitar for note. 1 stands for lowest string

6. excitationStyle: plucking style of the note (one of 3)

7. expressionStyle: expression style used (one of six)

1.1 Dataset 1

Dataset 1 consists of single note and chord recordings. Each recording contains one pluck. Single
notes are played from the 0th two the 12th fret. These add up to 312 files. In addition, it has two
chords, A and E, both major and minor of each at different barrés. This accounts for 44 files.
Note that unless stated otherwise, a chord will play 6 notes simultaneously.

No. of Single Note files 312
No. of Chord Files 44

Total Duration (minutes) ≈14

Table A.1: Fraunhofer IDMT Dataset 1 Details

https://www.idmt.fraunhofer.de/en/publications/datasets.html

22

1.2 Dataset 2

Dataset 2 consists of 12 licks (7 monophonic, 5 polyphonic) sampled at 44.1kHz (a lick is a stock
pattern/tune; durations were of the order of 10 seconds). They were recorded by the same guitarist,
playing three different guitars with different excitation and expression styles at standard tuning.
The dataset also contains some initialization files, which are prototype versions for prototype
versions for each playing technique as well as a plain version of every note on the fretboard for
each guitar and each string from fret zero (empty string) to fret 20

Guitars Used

The guitars used are the Fender Stratocaster (”FS”), Gibson Les Paul (”LP”) and Aristides 010
(”AR”), all at standard tuning (E2, A2, D3, G3, B3, E4).

Excitation Styles

There are three excitation/plucking styles - ”picked”, ”fingered” and ”muted”.

Expression Styles

In addition, we have six expression styles - normal(no), vibrato(v), slide(s), bending(b), harmon-
ics(h), dead notes(dn).

Lage

Finally, we have another parameter, lage, the German word for position, which denotes the pos-
sibility of playing the same pitch at ’x’ higher possible fret position (we know that in a guitar,
multiple string and fret pairs may map to the same MIDI note).
The table A.1 below (provided by the creators of the dataset) summarizes all the different combi-
nations possible.
In total, we have about 61 minutes of audio in the dataset. In large part, the dataset contains
notes in the MIDI number range of 39 to 80, since these are the more ”frequently used” notes of
a guitar.

23

Figure A.1: Fraunhofer IDMT Dataset 2 Details

1.3 Annotation Mapping

Out of the aforementioned parameters, for our task of multipitch estimation, the most relevant
features have been highlighted. Since we work on a frame-level analysis, we map the relevant
ground truth data as follows (refer to transcribe.py). idmt processing.py:

1. create an”entry” for each frame (boundaries governed by WINDOW LEN, HOP LEN and
SAMPLING RATE)

2. find the notes currently being played in that frame as follows: if the time instant of the
frame’s center ∈ [offsetSec, onsetSec] of a note, then that note is said to be currently playing

24

3. map to each frame an ordered list of notes, ordered in reverse chronological order w.r.t.
onsetSec (the assumption being that the note played more recently is the dominant one.
Results will depend heavily on this, especially in scenarios where estimated polyphony is less
than actual polyphony)

These mappings are stored as CSV files, as shown in the figure. CSV files like this may be generated
for any dataset, using the ConvertXml2csv function in idmt processing.py.
From this point on, ”ground truth” shall refer to the corresponding CSV file of an audio clip.

Figure A.2: csv Annotation file

2 Code Structure

The following figure summarizes the structure of the (Python) code:
multi pitch method

training

init .py

extract.py

train.py

utils

init .py

config reader.py

frame model.py

peak detection.py

utils.py

init .py

load models.py

transcribe.py

complete evaluation.py

config.json

evauation.py

extract training data.py

idmt processing.py

main.py

README.md

requirements.txt

train.py

25

The utils subdirectory contains utilities, that is functionalities common to training and
testing. The training subdirectory contains the files for training, while the remainder of the
multi pitch method directory contains other files required to run the main wrapper for testing,
main.py

We now discuss each of these modules in detail. In principle, one should be able to replace each
of these modules, keeping inputs and outputs same.

3 Common Utilities

3.1 Silence Detection

Before normalizing the energy of each frame to send for further processing (whether train or test),
we remove all the so called silence frames - frames that are less than 1% in energy of the frame
with the maximum energy in the clip, and therefore are not of use as far as acquiring training data
or prediction is concerned. Refer to transcribe.py.

3.2 Peak Detection

Detecting the positions fk (and hence log-amplitudes ak) of peaks in a frame spectrum is one of the
key tasks involved in both training the GMMs and testing a probe audio frame. We use the follow-
ing algorithm to detect peaks (refer to the GetFramePeaks function in utils/peak detection.py):

1. Compute the power spectrum of the frame, and restrict it to an upper limit of MAX FREQ (of,
say, 5000Hz) above which there would be no ”meaningful” peaks of standard octaves’ notes

2. Compute a smoothed power spectrum by running a Gaussian kernel of standard deviation
STD SMOOTHING

3. Peaks must satisfy the constraint that the difference between the power spectrum and the
smoothened spectrum must be greater than a threshold MAGNITUDE THRESHOLD

4. The peaks (both the location fk and the magnitude ak) are now refined as follows:

• From the points in the above step, only those which are actually local maxima are
retained

• The peaks are then refined by quadratic interpolation to account for errors due to
discretization in the DFT

4 Training

4.1 Extracting Data

As discussed in section 7 our trained models consist of probability density functions for dk, ak, fk|hk
and fk|hk, as well as a probability mass function for eh = 1|F0. We discuss these next. The relevant
data is first extracted from the dataset in extract training data.py and then stored as GMMs
in train.py.

https://ccrma.stanford.edu/~jos/parshl/Peak_Detection_Steps_3.html

26

4.2 Modelling p(dk)

dk is nothing but the deviation of each observed peak from the corresponding nearest harmonic.
Since we know dk to be (virtually) independent of the fundamental frequency, we consider the
”nearest” harmonic to be of that fundamental frequency (which is one of a finite set known from
the ground truth) for which the deviation itself is least.
This approach is applied on the entire dataset as follows:
Initialize an empty ”histogram” for dk. Then, for each frame in each file,

1. find all the peaks (3.2)

2. attribute to each peak the deviation dk from the nearest harmonic

3. update the histogram

Finally, the histogram itself is modelled as a GMM of 80 kernels with a full covariance matrix
(using the scikit-learn library) and stored as a pickle file(the number of kernels was found by
looking at the AIC/BIC curves).

4.3 Modelling p(ak, fk, hk) and p(fk, hk)

As discussed in 7, we need PDFs for ak, fk|hk and fk|hk. The following process is followed over
the entire dataset:

1. find the peaks, denoted by the pairs (ak, fk) and the corresponding hk (again viewed as the
closest harmonic of one of the ground truth fundamentals)

2. form the ”histogram” for both ak, fk and fk for each hk, for a predecided range (say 20) of
hk values

3. store each of these as GMMs as before

4.4 Non-Peak Region Modelling

To model the non-peak region, we require the probabilities P (eh = 1|F0). These are obtained from
the dataset as follows: count the number of occurrences of the hth harmonic of the ground F0, which
are observed within a tolerance of 3% of the theoretical position fk of the harmonic. Divide this
by the actual number of occurrences of the hth harmonic. Refer to extract training data.py.

5 Testing

We now look at how, on a frame level, the operations for multipitch estimation are implemented.

5.1 Candidate Generation

In order to find the fundamental frequencies of the sources in a frame, we first need to generate the
candidate set. We saw how candidates are defined in 6.2. In an interval of size DEVIATION around
each detected peak, with step size STEP, in a frequency range MIN FREQ to MAX FREQ (defined in
MIDI).

27

This is exactly what the function GetCandidates in utils/utils.py does. In addition, it also
returns an inverse map, which maps each candidate to the corresponding detected peak. This is
an optimization - once we select a candidate that accounts for a given peak (or set of peaks) we
need not keep the other candidates around.

5.2 The Frame Class

It was observed empirically that the most expensive step is evaluation of the likelihood function.
Thus, it is this computation in particular that we would like to do only when absolutely necessary.
It is for this reason that we define a frame class.
In section 6.3, we saw the high level pseudocode for the algorithm. Observe that the likelihood
function must be evaluated for each candidate F0. However, we can save a lot of computation by
doing some of the evaluation at the beginning. That is, computations common to candidates are
done at the beginning of the frame, and hence associated with the frame by using a class (refer to
utils/frame model.py.

5.3 Calculating Likelihoods

Recall that we have GMMs for each hk, for both the tuple of each peak ak, fk as well as fk. Note
that only hk depends on the candidate frequency.
Thus, instead of re-evaluating the GMM for each candidate for each peak, we evaluate the GMM
for each hk for each peak. It was observed empirically (code profiling via cProfile) that the latter
approach saves a lot of computation.
Once we have these evaluations, we simply evaluate the likelihood function over all candidates,
and thus ”pick” the best ones.

5.4 Polyphony Estimation

At this point, we have for our frame a list of possible F0’s, from which to pick our final prediction.
In order to pick the N best ones, we need to know what this N , i.e. the polyphony of the frame is.
We have already seen in section 8 how to pick this N . This is exactly what the function
PolyphonyProcessing in transcribe.py does. It evaluates N and then spits out the N length
predictions from the possible f0s.

5.5 Putting it all together

The sequence of operations for testing a probe audio clip can be easily followed by looking at
transcribe.py and the function of the same name.
The models are first ”loaded” for use. See /utils/load models.py

Next, we compute the STFT of the audio clip using the given configuration, carry out the com-
putation of possible f0s by making use of the Frame class on each frame Fourier transform, and
finally run PolyphonyProcessing to return the final predictions.
Finally, main.py serves as a wrapper around this, with command line arguments to load the audio
clip, models and configuration file.

28

6 Running the Code

6.1 Environment

All the required files can be run in a simple Python environment. We use the following requirements
for the Python environment:

• Python Version==3.7

• librosa==0.8.0

• numpy==1.19.2

• matplotlib==3.3.3

• pandas==1.1.5

• tqdm==4.54.1

• numba==0.53.0

• scipy==1.5.2

• scikit-learn==0.24.0

6.2 Configuration File

All the parameters, paths for training and testing of models are present in config.json file. The
information of the parameters used in these files is shown in the table below

Parameter Use
MAX POLYPHONY The maximum polyphony till which the greedy algorithm is used

T The threshold for polyphony estimation
SAMPLING RATE The sampling rate to which the audios are resampled

HOP LEN The hop length to be used for analysis in ms
WINDOW LEN Window length to be used for analysis in ms

skip Number of frames to skip between predictions
nfft Number of samples in FFT

window Window function to be used for analysis
models/peak region/path dk model Path to the dk GMM model

models/peak region/path ak fk hk model Path to the folder containing all the (ak, fk, hk) models
models/peak region/path fk hk model Path to the folder containing all the (fk, hk) models

models/non peak region/path non peak count
Path to the numpy file containing the frequency of

missed peaks in non peak region

models/non peak region/path non peak freq
Path to the numpy file containing the frequency

of fundamental frequencies
peak detection/MAX FREQ Maximum frequency till which peaks needs to be detected

peak detection/MAGNITUDE THRESHOLD
The threshold above which the peaks in power spectrum should

lie when compared to smoothened power spectrum

peak detection/STD SMOOTHING
The standard deviation used in gaussian filer for

smoothing the power spectrum
candidates/MIN FREQ Minimum frequency (hz) of a candidate
candidate/MAX FREQ Maximum frequency (hz) of a candidate
candidate/DEVIATION Deviation (in %) around the peak location in which to search for candidate

candidate/STEP Steps size (in %) between candidate frequencies around peak
raw data Path to the raw data files for training

29

6.3 Heuristics for Parameter Tuning

• Silence Detection: a threshold of 1% was set to ignore silence frames, That is, frames with
energy 1% or less of the peak energy frame in the audio file are ignored

• peak detection/MAX FREQ: peak detection was carried out only up to 5000 Hz, since it was
observed that beyond this number, noise dominates the higher harmonics of the notes

• Max. number of harmonics (hardcoded): kept to 20, since for most instruments, harmonics
beyond 20 will be masked by noise

• Threshold T for Polyphony estimation: we observe the ”diminishing returns” behaviour of
the log likelihood function, and set T such that beyond T×∆(M) not much change happens,
as shown below.

Figure A.3: Method for Estimating T

• SAMPLING RATE: to get a better frequency resolution in STFT

• candidates/MIN FREQ and candidates/MAX FREQ: it was observed in the dataset that most
observations lie in the MIDI range [39,80]

• MAX POLYPHONY: kept to 5 since for major and minor chords, expect polyphony of 3 (as
discussed in octave folding). In principle, any finite number bigger than 3 suffices

• WINDOW LEN and HOP LEN: to balance time-frequency resolution trade-off (dataset dependent).
Found by observation in Praat or any other audio analysis tool

30

6.4 Training the Models

Extracting Data for Model Training

The next step in the training process if the extraction of training data. This is done by
ExtractFromDataset function in extract training data.py file. This file takes 2 inputs:
config.json and path to dataset, and saves (ak, fk, hK), dk, and the count of harmonic peaks in
non peak region, frequency of fundamental frequencies. The locations of these files is shown in the
table below.

Data Location
ak, fk, hk config[’raw data’]/ak fk hk.npy

dk config[’raw data’]/dk.npy

count of harmonic peaks in non peak region
config[’models’]["non peak region"]

[’path non peak count’]

frequency of fundamental frequencies
config[’models’]["non peak region"]

[’path non peak freq’]

GMM Training

The main script for training the GMMs is present in train.py. This takes the path of raw
data from the config file (as in the above table), trains the GMMs and stores the trained GMMs
in the path given in config file. This is done by the TrainPeakRegion function present in the
multi pitch method folder to keep consistency in training when dataset changes.

6.5 Testing on an Audio File

For this, we need only run the wrapper main.py with the relevant arguments:

• audio file: Path to the audio file to transcribe (frame by frame transcription)

• config file: Path to the config.json file

• profiling out: Path to the output file of code profiling. If not supplied, code profiling will
not be done

• plot file: Path to the save the plot of the prediction. If not supplied, no plot will be saved

• output: Path to which output must be saved. It will be saved in pickle format

	Automatic Music Transcription
	Introduction
	Basics: Notes and Chords
	Chords in a Guitar

	Literature Review
	Non-negative Matrix Factorization
	Harmonic Product Spectrum (HPS)
	Template-based Matching
	Hidden Markov Models
	Multi-pitch Estimation

	Multipitch Estimation Overview
	The STFT
	Maximum Likelihood Estimation
	Greedy Search
	The Candidate Set
	Algorithm

	The Likelihood Function
	Peak Region Likelihood
	Non-peak Region Likelihood

	Polyphony Estimation
	Results
	Performance Metrics
	Frame Level Results
	File Level Results
	Preliminary Batch Level Results

	Future Work

	Bibliography
	Appendix Manual
	Dataset Details
	Dataset 1
	Dataset 2
	Annotation Mapping

	Code Structure
	Common Utilities
	Silence Detection
	Peak Detection

	Training
	Extracting Data
	Modelling p(dk)
	Modelling p(ak,fk,hk) and p(fk,hk)
	Non-Peak Region Modelling

	Testing
	Candidate Generation
	The Frame Class
	Calculating Likelihoods
	Polyphony Estimation
	Putting it all together

	Running the Code
	Environment
	Configuration File
	Heuristics for Parameter Tuning
	Training the Models
	Testing on an Audio File

