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Abstract

Artificial generation of art forms like painting, sketches, music, etc., necessitates intense cre-

ativity. In the field of artificial intelligence, art generation is an attractive research area. Music

is a very structured yet extremely complicated language. However, when one thinks of compos-

ing, one thinks of human intellect, creativity, and emotions. The goal of the sequential method

of creation throughout musical history has always been to disrupt music codes. Musicians have

created works that are both imaginative and precise. Classical music, for example, is noted for

its careful structure and emotional impact.

Transformer and its variants have demonstrated state-of-the-art performance on a variety

of NLP tasks and music generation. Despite all of the success of sequential modeling recently,

there still exist many issues such as understanding rare words or sparsely occurring events of

interest. Another major issue is the presence of biases in the generated output as they mimic

the distribution present in the training dataset. In the domain of drum accompaniment, fills and

improvisations are important elements of a drum track. They act as cues for the band as well as

the audience of an upcoming change in verse. They also help in keeping the audience engaged

with the song. These drum fills occur every 8 to 12 bars and hence are highly underrepresented

in any dataset. This gives a very unique sequential style to the drum pattern, majorly consisting

of a repeating pattern with some minor variations.

In this work, we use the Transformer sequence to sequence model to generate an accompa-

nying drum pattern conditioned on an input melodic accompaniment consisting of notes played

by instruments Piano, Guitar, Bass, and Strings. On the manual evaluation of the drum tracks

generated by this model, we find that the drum fills and improvisations are largely absent, pos-

sibly due to their relatively low representation in the dataset. We propose a novelty function to

capture the extent of improvisation in a bar relative to its neighbors. We train a model to pre-

dict improvisation locations from the melodic accompaniment tracks. Finally, we use a novel

BERT-inspired in-filling architecture, to learn the structure of both the drums and melody to

in-fill elements of improvised music, i.e., the fill bars.
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Chapter 1

Introduction

“If I were not a physicist, I would probably be a musician. I often think in music. I live

my daydreams in music. I see my life in terms of music.... I cannot tell if I would have done any

creative work of importance in music, but I do know that I get most joy in life out of my violin.”

– Albert Einstein

Music has become part and parcel of our lives. It is the art of arranging sounds to produce

compositions by varying melody, harmony, rhythm, and timbre. Pitch governs harmony and

melody in a more generalized definition, while rhythm is commonly associated with articulation

and tempo. The musical part that provides harmonic and rhythmic support for a song’s central

theme or melody of a song/instrument is known as accompaniment. Different genres and styles

of music encompass different types of accompaniments.

One of the most common forms of accompaniment is that of a percussion instrument. This

kind of accompaniment mainly provides rhythmic support while maintaining the song’s timing

structure and overall mood. In modern music, this work is done by a drummer. Drummers need

to use their ear and judgment as much as their skills to tone up or tone down their playing to

best compliment the song [4]. Bassists and drummers together usually form the rhythm section

of a band. A guitarist/vocalist/other musicians can often get away with the odd mistake or bum
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note, but drummers cannot miss a beat or drop the tempo as such mistakes are easily noticeable.

This is in contrast to related generative tasks like image generation, in which a small error in

the predicted pixel intensity could be imperceptible to the human eye.

The ambition to learn creativity led to the development of systems with computational

creativity on various tasks. Deep learning has revamped the area of generative modeling in re-

cent years. The task of generating music of melodic instruments gained widespread attention in

recent times [3, 5, 6, 1, 7, 2]. However, the task of generating an accompanying drum pattern for

a given melody is not tackled much, as it is challenging to build a model having computational

creativity. A few researchers have tackled this task using Autoencoder (AE) architecture [8, 9].

While such models have shown promising results for generating repetitive drum patterns, they

lack creativity in improvisation sections of a song.

Evaluation and assessment of generative systems have proven to be a challenging task.

Subjective evaluation of music, while being the ultimate choice, presents its challenges with

designing experiments for eliminating bias and controlling other relevant variables. The ever-

changing interaction between performance and composition and the abstract meaning of emo-

tion in music makes it even tricky to design objective evaluation metrics.

We try to build a model for generating drum accompaniment for a given melodic accompa-

niment in this work. We studied various music evaluation methods and proposed some criteria

for matching the predicted drum distribution with a professional drummer’s distribution. We

focus on making a system that can perform a drum fill/improvisation at appropriate locations in

the generated drum track.

1.1 Drum Kit & Drumming Style

A collection of percussion instruments like cymbals, which are set up to be played by a single

player using drumsticks and feet-operated pedals that control hi-hat cymbal and beater for the

bass drum, is known as a drum kit. A standard modern kit contains: a snare drum placed

between the players’ knees mounter on the stand and played with drum sticks, a bass drum

played with pedal, toms of two or more kinds, hi-hat played with sticks and can be opened or

closed with foot pedal and one or more cymbal mounted on stands and is played with sticks
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Figure 1.1: Drum Kit

(Figure 1.1).

A musician who is an expert at playing drums is known as a drummer. Western bands that

play jazz, rock, or pop include a drummer for keeping time and are also known as "timekeepers."

The drummer is known to be the backbone of a band. Their flawless sense of timing provides

support and gets the best out of other members of the band. Apart from being the band’s

timekeeper, they are also required to embellish the song during the performance. This includes

accentuating the singer’s vocal prowess and the rhythm played by other instruments to make the

song expressive.

As the genre of the songs varies the drummer is expected to play in a different style. For

e.g., in a bar of rock music, the first beat is also known as the downbeat, and the third beat has

similar instrumentation, usually featuring a hi-hat and kick drum onset. Beats 2 and 4 which

are commonly referred to as the backbeat, include a hi-hat and snare drum onset. The beat style

played by the drummer also influences the overall feel of the song. Generally, either the 8th note

pattern or 16th note patterns are played. This means that there are either 8 drum strokes in a bar

or 16 drum strokes in a bar respectively. In the 8th note pattern (Figure 1.2a), there are 2 drum

strokes in every beat; one at the start of the beat and one in the middle, whereas in the 16th note

pattern (Figure 1.2b) there are 4 equally spaced drum strokes in a beat. Since the 1970s, 16th

3



Figure 1.2: (a) 8th note drum pattern where the hi-hat is being played 8 times in a bar (b) 16th

note drum pattern; hi-hat being played 16 times in a bar

note subdivisions have been used to produce a funky atmosphere. In ballads, they are frequently

played at a slow tempo. The beat of choice for Disco tunes was 16th notes on the Hi-Hat and

playing the bass drum on all four beats, which is known as “4 on the floor". The Disco sound

and beat persisted in mainstream pop for a while before making a significant comeback with the

arrival of club dance music. It has never gone away since then, and it is still the fundamental

beat of pop music today.

1.2 Contribution

1. We show that traditional attention-based transformer architectures fail to capture the “im-

provisation" due to implicit data imbalance.

2. We propose a method to extract drum bars with fills and improvisations by capturing the

extent of improvisation in a bar relative to its neighbours

3. We also show that the sampling-based approaches fail to produce a variation of the pattern

at the right location. To mitigate this, we show that self-attention-based architectures can

extract high quality features, which can be used to predict the location of improvisations.

4. We propose a novel in-filling approach, inspired by BERT that can look at the context of

drums and the context of melody and use it to generate the improvised bars.

5. We demonstrate an MLP-based synthesis module for drum improvisation generation from

a latent code.
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1.3 Outline

Chapter 2 presents an overview of the accompaniment generation methods present in the lit-

erature. It also presents a review of the various input and output representation methods and

defines the specific task addressed in the present work.

Chapter 3 discusses the dataset used and the details of the preprocessing steps. This chap-

ter also explains our input and output representations and various preprocessing steps used in

our work. It also contains the details of the steps taken by us to extract the bars with fills and im-

provisations and further analysis of these bars. Chapter 4 presents various architectures tested

by us for our task. It also provides a sub-module evaluation to get a deeper understanding of the

results performed musically.

Chapter 5 contains various musically inclined metrics to evaluate the final samples gener-

ated. Finally, chapter 6 contains a summary of the work carried out by us and lays out some of

the potential directions for future work.

1.4 Publication

1. Rishabh Dahale, Vaibhav Talwadker, Prateek Verma and Preeti Rao, “Neural Drum Ac-

companiment Generation From Melody”, Int. Society of Music Information Retrieval

Conf., Late Breaking Demo Track, Online, 2021

2. Rishabh Dahale, Vaibhav Talwadker, Preeti Rao, and Prateek Verma, “Generating Coher-

ent Drum Accompaniment with Fills and Improvisations”, Submitted to Int. Society of

Music Information Retrieval Conf., Bangalore, India, 2022
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Chapter 2

Overview of Accompaniment Generation

As we now have the knowledge of drum kit and some insights into a drummer’s choice of

beats, we now turn to the task of conditioned music generation. We aim to generate coherent

accompanying drum patterns for given melodic input. In our case, this melodic input consists of

the notes played by various instruments. This chapter contains an overview of different methods

of music generation present in the literature and a detailed review of selected works. We present

various methods of music representation used in literature and also survey recent progress in

language modelling as our task is very similar to it.

Midi like tag
REMI
MuMIDI
Pianoroll Matrix
Audio waveform 
Spectrogram

Audio/Music
Representation

RNN
LSTM
VAE
GAN
Transformer
RL based models

Machine Learning
Approach

Output

Figure 2.1: General Approach for Music Generation Models
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2.1 General Approach and Methods

Figure 2.1 shows the general approach taken for music generation tasks. Audio/Music repre-

sentation is an important step, as it can help the model abstract musical features easily, making

the learning process simple. Several music modeling/representation methods have been studied

in the literature. A brief overview of different methods is presented below:

1. Midi Like Tag: MIDI is a technical standard that describes a communication protocol

that connects a wide range of electronic musical instruments. Instead of storing actual

audio samples, high-level information like pitch (MIDI number), loudness (MIDI veloc-

ity), the instrument on which it is being played, and the duration of the note is saved. This

data is converted to a tag, similar to the one used in the ASR task, which is then fed to the

network. Different kinds of tag representation used in literature are:

(a) Simple MIDI Tags: Tags used in this representation are

i. SET_VELOCITY<v> denotes the velocity v of the proceeding NOTE_ON event.

The velocity of a note can be a value in the range 0-127

ii. NOTE_ON<p> denotes the onset of pitch p

iii. NOTE_OFF<p> denotes the offset of pitch p

iv. TIME_SHIFT<m> denotes shift in time in ms

(b) Note Tag: This notation represents the notes in a quantized beat instead of actual

notation. It simply denotes the pitch being played at the given time step, with a

different notation for holding a note [7]. E.g., if a beat is quantized in 4 parts and

the note C4 is being played, it will be represented as [C4, C4_hold, C4_hold,

C4_hold].

(c) REMI: REMI [2] stands for REvamped MIDI. This notation is derived from the

simple MIDI tags notation. In this, the timeshift tag is replaced to denote the position

in a bar, and the duration of the note is defined in terms of multiple of 32nd note. The

chords are extracted to a higher level notation to reduce the burden on the model.

(d) MuMIDI: MuMIDI [3] stands for Multitrack MIDI representation. This is a modi-

fied form of REMI to include the instrument information.
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(a) Simple MIDI Tag

(c) MuMIDI

(b) REMI

(d) Pianoroll

(e) Waveform (f) Spectrogram

Figure 2.2: (a) Simple MIDI Tags used by [1], (b) REMI representation proposed by [2], (c)

MuMIDI representation proposed by [3], (d) Pianoroll representation, (e) Simple Audio wave-

form, (f) Spectrogram of the audio

2. Relative Positioning: In this notation, all the notes are presented in relative position to

the previous note played by the instrument. The relative positioning is done based on

the number of semi-tones (notes) present between the two notes. For example, a series

of notes [C4, D4, F4, E4] will be represented by C4, +2, +3, -1. This provides an

advantage of encoding the relative distance information in the input itself.
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3. Pianoroll Matrix: The automatic piano inspires this notation. The note events in MIDI

are represented as a N ×T matrix, where N is the instrument’s pitch range, while T rep-

resents the time. Each beat is subdivided into multiple parts to represent smaller duration

notes. Each element in the matrix represents the velocity of the note being played.

4. Audio Waveform: The waveform is the most direct representation of the audio signal.

Audio waveforms are the most simple 1D representation of the signal. Due to recent

works on models like WaveNet [10], and NSynth [11], raw audio, even though they are

computationally heavy, can now be directly processed.

5. Spectrogram: Spectrogram contains much more detailed frequency components of the

audio signal. Compared with most traditional manual features used in audio analysis,

spectrogram retains more information and has a lower dimension than the original audio.

2.2 Summary

With the recent rise of neural networks, computational music generation has gained renewed

interest. Over the past decade, the music generation task has attracted the attention of many

researchers. Deep learning algorithms have currently become mainstream in the field of music

generation.

For a long time, recurrent neural networks (RNNs) were used to model sequential data.

In fact, in 1989, RNNs were used for the first time for the generation of monophonic melody

by [12]. Due to the vanishing gradients problem of RNN, storing long historical information

was difficult, and LSTMs [13] were developed. Eck et al. [14] demonstrated the use of LSTM

for improvising blues music with good rhythm and reasonable structure based on short record-

ings. Later an RNN-RBM model was proposed by [15] which demonstrated superior results for

polyphonic music generation on several datasets. Google brains Magenta team also proposed a

Melody RNN model [16] to improve further the ability of RNN to learn long-term structures.

Lately, with the development of complex deep learning architectures like Variational Au-

toencoders, Generative Adversarial Networks, and Transformers, music generation methods

have seen a paradigm shift from RNN to these generative networks. Roberts et al. [19] pro-
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Year Author Reference Input/Output representation Solution Method

1989 Todd et al. [12] Relative Positioning Simple RNN

2002 Eck et al. [14] Pianoroll LSTM

2012 Boulanger et al. [15] Pianoroll RNN-RBM

2017 Chia et al. [17] Pianoroll GAN

2018 Dong et al. [18] Pianoroll GAN

2018 Roberts et al. [19] Pianoroll VAE

2019 Lattner et al. [8]

Onset of Snare

and Bass &

Beat and

Downbeat input

Gated Autoencoder

2019 Wei et al. [9]
CQT for audio

Pianoroll for Drums

Variational Autoencoder

(Predicting Drum SSM

from melody SSM and

then using this to

generate drum patterns)

2018 Zhi et al. [1] Simple MIDI Tags
Relative Positional

Self-Attention Transformer

2019 Donahue et al. [20] Simple MIDI Tags Transformer-XL

2020 Huang et al. [2] REMI Transformer-XL

2020 Thorn et al. [21]

Drum Machine

Control Inputs

OR

Simple MIDI Tags

Transformer-XL

2020 Huang et al. [2] REMI Transformer-XL

2020 Ren et al. [3] MuMIDI Transformer-XL

2021 Nuttall et al. [22] Simple MIDI Tags Transformer-XL

2017 Yu et al. [23] Pianoroll RL + RNN based GAN

2020 Jian et al. [7] Note Tag

RL (Actor-Critic

with generalized

advantage estimator)

Table 2.1: Overview of previous work on Music Generation
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posed a hierarchial VAE model to capture the long-term structure of polyphonic music, which

has great interpolation and reconstruction performance. Wei et al. [9] observed that the self-

similarity matrix (SSM) of melody and drums show significant correlation and tried to predict

the drum SSM from melody SSM using VAE. They used this predicted drum SSM to generate

an accompanying drum pattern for the given melody, while [8] proposed a Gated Autoencoder

model for the conditional generation of drum pattern while gaining control over the music gener-

ation. Dong et al. [18], and Yang et al. [17] used CNN-based GAN architecture to demonstrate

their power for music generation. Yu et al. [23] combined reinforcement learning methods to

train RNN based GAN for the first time, and [7] have tried to develop a real-time interactive

music generation model based on ideas from reinforcement learning. Recently, Transformer

models have shown their great potential in music generation [24, 1, 3, 2]. Huang et al. [1]

used Transformer architecture for the first time to model long-term architectures to create mu-

sic. Donahue et al. [20] proposed a multi-instrument input representation for the Transformer

model and suggested a pre-training method based on transfer learning, and [2] proposed MIDI-

based methods for music representation REMI and used the Transformer XL [25] for sequence

modeling to generate piano music.

There has been an increase in interest in the Transformer architecture since it was first

introduced [26], particularly for modelling sequential tasks in NLP and music production. The

use of an attention mechanism to learn long-term patterns helped it to easily surpass dilated

convolution-based methods like WaveNet [10, 27]. They achieve state-of-the-art performance

in a variety of natural language problems [28], music/audio understanding [29], and generation

tasks [24, 1]. BERT [30], an extension of the Transformer Encoder, was designed to pre-train

deep bidirectional representations from an unlabeled text by jointly conditioning on both left

and right contexts, causing a huge stir by presenting state-of-the-art results in a wide variety

of NLP tasks including Question Answering (SQuAD v1.1) and Natural Language Interface

(MNLI). Despite all of the success of sequential modeling recently, there still exist many issues

that are relevant to our current work such as understanding rare words or sparsely occurring

events of interest [31]. Another major problem is the presence of biases in the generated output,

as they mimic the distribution present in the training datasets [32, 33].

Even though there are considerable advances in neural language modeling, the task of

finding an optimal decoding strategy remains an open question. Beam search, a method based
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on the principle of maximum likelihood estimation, is widely used for decoding the text se-

quence from the predicted distribution. However, it is observed that such decoding often leads

to text degeneration even with large state-of-the-art models like GPT [34]. To avoid [35] relied

on sampling from the top k most preferred choices for the task of story generation. Although

the results of such a sampling-based approach were impressive, they often lead to text that is

incoherent and almost unrelated to the context. Holtzman et al. [34] proposed a nucleus sam-

pling approach to overcome this, where instead of selecting the top k most preferred choices,

the least number of choices are preferred so that the resulting likelihood is above a threshold.

The distribution of these choices is then normalized and sampled. This approach avoids the

problem of text degeneration by truncating the tail of the probability distribution.

2.3 Detailed Review of Selected Works

One of the main challenges in drum accompaniment generation tasks is to generate a structurally

cohesive sequence. A self-similarity matrix is the graphical representation of a similar sequence

in data series. [9] observed that the self-similarity matrix of melody and drums have a correlated

structure. They use this observation to generate drum patterns from audio domain music input.

The melody is represented by a constant Q-transform spectrogram, whereas a binary pianoroll

matrix represents the drums. They use a Variational Autoencoder (VAE) structure to predict a

drum SSM matrix. This generated drum SSM is passed through a bar selection module, where

top k bars are selected. These selected bars are used to generate the output drums in a bar-by-bar

method. This method does not guarantee a rhythmic consistency across the bars.

Another crucial issue in music generation, especially when conditioning on a piece of

existing music, is user control. Lattner et al. [8] demonstrate the use of Gated Autoencoder ar-

chitecture to gain control over the drum patterns by mapping real kick drum onsets to a Standard

Gaussian distribution. Samples from this Standard Gaussian distribution are passed through a

convolution gated autoencoder to generate drum patterns. The authors introduce an adversarial

loss for the model training to make the mapping more constant over time. A further loss that

constraints map to have zero mean and unit standard deviation over time is introduced. With

the liberty to sample from the learned distribution, the authors present control over the drum
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generation process.

Huang et al. [1] tried to address the problem of long-term dependencies by proposing an

alternate implementation of the relative attention mechanism to reduce the memory requirement

of the Transformer from quadratic to linear in sequence length. This allowed them to generate

minute-long compositions with a compelling structure. Another approach taken by some re-

searchers [3, 2, 22, 21] is the use of a bigger Transformer-XL [25] model. Huang et al. [2]

proposed the REMI notation to exploit the grid structure of music. This representation could be

used to represent a single instrument. The authors used it to extend piano samples and demon-

strated a better rhythm structure compared to [1]. Building on this work, [3] extended the REMI

representation to include a multi-instrument representation and were able to successfully able

to generate multi-track songs. Nuttall et al. [22] modified the MIDI tags of nine percussion in-

struments to represent notes being played by a triplet of pitch, velocity, and start time, and used

it with the Transformer-XL model to sequentially generate the drum pattern. Thorn et al. [21]

demonstrated three experiments with the Transformer-XL model with varying input and output

representation and control. In two of the experiments, the authors tried to control the drum ma-

chine while in the third experiment they tried to generate the drum pattern directly. While the

Transformer-XL model facilitates the generation of longer duration (musical) sequences, they

still suffer from the same issues of biases in dealing with the implicit data imbalance that exists

in the training dataset [36, 37].

2.4 Task Definition in the Present work

In an accompaniment generation context, creating a coherent drum pattern with apposite fills

and improvisations at proper locations in a song is a challenging task. Drum beats tend to

follow a repetitive pattern through stanzas with fills/improvisation at section boundaries which

generally occur every 8-12 bars. In this work, we tackle the task of drum pattern generation

conditioned on the accompanying music played by four melodic instruments – Piano, Guitar,

Bass, and Strings. We use the Transformer sequence to sequence model to generate a basic

drum pattern conditioned on the melodic accompaniment to find that improvisation is largely

absent, attributed possibly to its expectedly relatively low representation in the training data.
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We propose a novelty function to capture the extent of improvisation in a bar relative to its

neighbors. We train a model to predict improvisation locations from the melodic accompani-

ment tracks. Finally, we use a novel BERT-inspired in-filling architecture, to learn the structure

of both the drums and melody to in-fill elements of improvised music. To mitigate the issues

with audio synthesizing, especially for music which have a rich harmonic dependency, all the

work is being carried out in symbolic domain. We use a mixture of MIDI tag representation and

pianoroll representation to suit the strengths of individual models.
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Chapter 3

Dataset

In this work, we use the Lakh Pianoroll Dataset (LPD) [18, 38], a subset of Lakh Midi

Dataset (LMD) [39]. This dataset is a collection of 174,154 songs. It contains multitrack

pianorolls stored in a special format for efficient I/O. The songs in LPD are further processed

to generate the following subsets of the dataset:

1. LPD-Matched: This contains 115,160 multitrack pianorolls derived from the matched

version of LMD. These files are matched to entries in the Million Song Dataset (MSD).

2. LPD-Cleansed: This subset contains 21,425 multitrack pianorolls, derived from LPD-

matched after processing for the following:

(a) Songs with more than one time-signature change events are removed

(b) Songs with the time-signature of 4/4 only are selected

(c) Songs whose first beat do not start at the time zero are removed

(d) Only one file is kept that has the highest confidence score in matching for each song.

The matching scores are the confidence on whether the MIDI file match any entry

in MSD
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Moreover, there are two versions of the above splits:

1. LPD-5: This dataset contains five instruments: Piano, Guitar, Bass, Drums, and Strings.

2. LPD-17: This dataset contains seventeen instrument tracks: Drums, Piano, Chromatic

Percussion, Organ, Guitar, Bass, Strings, Ensemble, Brass, Reed, Pipe, Synth Lead, Synth

Pad, Synth Effects, Ethnic, Percussive, and Sound Effects.

We use the LPD-5 cleansed, which contains 21,425. Among these five instruments, we

choose Piano, Guitar, Strings, and Bass as the melodic accompaniment input and drum track

as the percussion accompaniment. We condition the percussion accompaniment on the melodic

accompaniment. All the songs in this dataset are of 4/4-time signature i.e., all the songs contain

4 beats in a bar and the dimensionality of each bar in this dataset is 128 (pitch) x 96 (time steps)

i.e. each beat is divided into 24 parts.

3.1 Data Preprocessing

To compress the input and output representation, we perform the following pre-processing steps:

1. All the songs were trimmed to eliminate the start and end silences in the drum track

Figure 3.1: Percentage of beats/notes events retained by downsampling each beat to 4, 6, 8 and

12 parts per beat

2. As the dataset has split each beat into 24 parts, a bar of 4 beats requires 96 vectors for

representation. This kind of split was done to capture common temporal patterns such
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as triplets and 32nd notes. This kind of split, while being detailed, required a massive

amount of memory, and hence computation cost increases. We analyzed the percentage

of retained beats by downsampling each beat to 4, 6, 8, and 12 parts per beat (PPB).

Figure 3.1 shows the percentage of retained beats after doing the above downsampling

for all the instruments. It can be seen that while there is a consistent drop in the number

of note events retained as the PPB decreases, samples with 8 PPB still retain 98.6% of

the drum beats and ≈ 70% of notes played by other instruments while reducing the data

size by a factor of 3. Hence we opted for downsampling all the pianorolls from 24 PPB

to 8 PPB.

3. Figure 3.2 shows the distribution of usage of various MIDI pitches by all the instruments.

As we can see that the majority (> 95%) of the notes being played by Piano, Guitar, Bass,

and Strings are in the range of 21-83, we select only these MIDI ranges and discard notes

being played outside it. This range corresponds to notes A0 to B5 musically

Figure 3.2: Usage of various pitches by different instruments

4. In the MIDI representation of a drum track, there are multiple representations for a sin-

gle instrument based on different characteristics. We combine such similar instruments

together. Table 3.1 gives a list of instruments combined for our task

19



Instrument Name MIDI Pitch MIDI Instrument

Snare Drum
38 Acoustic Snare

40 Electric Snare

Kick Drum
35 Acoustic Kick Drum

36 Bass Kick 1

Ride Cymbal
51 Ride Cymbal 1

59 Ride Cymbal 2

Crash Cymbal
49 Crash Cymbal 1

57 Crash Cymbal 2

Table 3.1: List of instruments combined in the drum track

5. From figure 3.2, we can see that a majority of the drum strokes are being captured by

a selected few instruments. On further analysis it shows that about 85.3% of the drum

strokes are being captured by these 16 instruments: snare drum, open hi-hat, close hi-hat,

kick drum, ride cymbal, crash cymbal, low-floor tom, high-floor tom, high tom, hi-mid

tom, low tom, cowbell, pedal hi-hat, tambourine, cabasa, and maracas. We select only

these 16 instruments for our task.

6. To decrease the number of training parameters, we exclude the velocities of the drum

track and binarize it. This only keeps the information on whether the instrument is being

played or not and discards the loudness of the instrument.

7. As we can expect a fill ever 8-12 bars 1.1, we split all our songs into non-overlapping

contiguous 11 bar samples.

Among the 21,425 multitrack songs, 16,832 were used for training, while 4,593 were used

for validation. Due to the limited availability of data, we use the validation set as the test set.

3.2 Data Representation

The dataset contains a pianoroll matrix to represent the notes playing in each of the tracks

at a given time. The values in the matrix represent the velocity (loudness) of the note being
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played. As we are working with 11 bar samples, our pianorolls contains 32×11= 352 timesteps

(sequence length).

Guitar Envelope

Drums Envelope

(a) (b)

Figure 3.3: (a) Distribution of Silences across instruments in the dataset (b) Envelope of a single

guitar pluck v/s that of a single drum stroke

As music is an arrangement of sounds and silences, we analyzed our dataset for the dis-

tribution of silences across various instruments. From figure 3.3a, we can see that silences

capture a significant portion of any instrument representation. Also, it is interesting to see that

drums contain the highest portion of silences (≈ 70%) while strings contain the least amount

of silences (≈ 20%). This is because percussion instruments usually decay faster than other

instruments like guitar, piano, and strings (figure 3.3b).

Figure 3.4: Data representation methods used in this work: (a) Melodic accompaniment pi-

anoroll representation; (b) Percussion accompaniment serial grid representation; (c) Percussion

track pianoroll representation

As the symbolic domain representations capture the essential high-level feature of music,

working in this domain allows us to focus on the musicality of the output instead of worrying
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about the quality of the actual audio produced. Due to this, we restrict ourselves to symbolic

domain inputs and outputs. For the melodic accompaniment input, we use a modified version

of the Pianoroll representation. We represent every melodic accompaniment bar in a song by a

256 (feature dimension) × 32 (timesteps) matrix. The 256 dimensions of this melodic accom-

paniment are split equally amongst the 4 melodic instruments: Piano, Guitar, Bass, and Strings

as shown in Figure 3.4a, giving each of them a 64-dimensional vector. The first dimension in

these 64 dimensions is the silence state. This is a binary state which represents whether the

instrument under consideration is silent for that timestep. The other 63 dimensions contain the

velocities of the MIDI pitches 21-83 being played. A velocity of 0 means that the note is not

played. For the percussion accompaniment track, we use 2 different methods for representation

depending on the model with which it needs to be used. One of the methods of representation is

a pianoroll representation. This is similar to a melodic accompaniment pianoroll. As we have

selected only 16 percussion instruments, every bar in the percussion track is represented by a

16 (percussion instruments) × 32 (timesteps) matrix. This is a binary matrix indicating only the

active percussion drum instruments. The other representation used by us for percussion accom-

paniment is the serial grid representation. This is designed to take the advantage of language

modelling tasks. In this representation, only the active percussion instruments which are being

played are unfolded into a sequence of tokens. Along with the 16 percussion instruments, we

add a silence token and a shift by one token in this representation making a total of 18 tokens.

An encoder-decoder transformer structure hugely benefits from the serial grid representation

while some other models benefit from pianoroll representation.

3.3 Data Augmentation

The process of applying ways to improve the quantity, diversity, and balance of an insufficient

dataset by making realistic changes to existing data samples is known as data augmentation.

These variations, which are meant to represent instances that are likely to be encountered during

testing, help the model avoid memorising the training dataset’s quirks. Modifying the input data

samples or the extracted features (adding dropouts in the model) can be used to augment the

data. The addition of a little amount of random noise is a simple form of augmentation. This is

known to improve the model’s robustness by broadening the distribution that it learns. Inspired
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from the sensor dropout methods in robotics [40] we propose the following data augmentation

methods for our task. While common data augmentation methods are used in all the models,

we introduce supplementary methods when needed.

3.3.1 Common Data Augmentation Methods

The following data augmentation methods can be applied to each individual input of the model.

The model can have multiple inputs but the following methods can be applied to each input

individually.

• Random Instrument Masking: In the melodic accompaniment, generally a few of the

melodic instrument takes a lead in melodic pattern while the other instruments try to

complement this with chords, arpeggios, or some complementary melodic pattern. To

force the model to consider such variations while making a decision, we randomly mask

one of the melodic instruments in 40% of the input samples. The choice of instrument to

be masked is being done at random. This is done in an online fashion in every epoch to

increase the number of augmented samples.

• Random Timestep Masking: At times the musicians can make a mistake leading to

disruption of the rhythm of the song. If such a thing happens, they are trained to get back

on the timing grid as fast as possible. We try to simulate this by randomly masking 20%

of the timesteps from the input.

3.3.2 Supplementary Data Augmentation Methods

In addition to the above augmentation methods, we use the following methods when necessary.

The first method can be applied to models with more than one input, while the second method

is used to replicate the behaviour of noisy predictions to be used by other models.

• Input Masking: For models with more than one input [41], it is important for the model

to efficiently work with partial inputs in case some inputs are missing. This also enhances

the individual branches of the input to extract more relevant features and forces the model
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to not to memorize any pattern in input for a particular output. This can be achieved by

randomly dropping some inputs while training.

• Input Random Noise: As no training is perfect, during the evaluation phase there tends

to be some noise in the predictions. If the output of one model is being used as input

for another, this noise can disrupt the second model’s behaviour. To tackle this, we can

introduce noise in the training phase of the second model itself. This helps the model to

filter out the noises and make a better prediction from the noisy input.

3.4 Fills and Improvisation Detection

Fills are a short group of notes played as the music transitions from one section to the next,

which are typically 8-12 bars long. If a section is supposed to be longer, then a small fill may be

introduced in between to keep the audience engaged. These act as an indicator to the audience

as well as the band of the upcoming transition in the song. A drummer generally plays a basic

repetitive drum pattern with occasional fills and improvisation in the drum pattern to keep the

audience engaged. The basic drum pattern can exhibit a different behaviour near a fill as shown

in Figure 3.5.

As the focus of this work is on detecting and generating fills and improvisations in the

drum track, we need to isolate them from the full drum track. To achieve this, we propose

a novelty function to capture the extent of improvisation in a bar compared to its neighbours

using a self-distance metric. We perform the following steps (shown in Figure 3.6) to capture

the locations of improvisations

1. For any 11 bar sample, we consider the centre bar as the bar of interest and use the 5 bars

on either sides as the context bar. We calculate the between two bars: bari and bar j using

the following equation:

||bari −bar j||1 × k
||bari||1 + ||bar j||1

(3.1)

The value k is the hanning window weight. This is based on the relative distance between
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Figure 3.5: Different behavior of basic drum pattern under around fills. The SSM plots for the

same and the novelty plot for all the 3 samples (a) The basic pattern remains the same before

and after the fill (b) The basic pattern changes slightly after the fill (c) There is a huge change

in the basic drum pattern after the fill

bars i and j. As the improvisation is a local phenomenon, we use this weighing parameter

to decrease the effect of bars that are far from each other.

2. This calculation is done for all the bars across a track, except the first and the last 5 bars

due to the lack of context bars. From 3.7 it can be seen that the novelty function peaks at

the bar with a drum fill. These bars are then extracted using a peak picking mechanism.
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Figure 3.6: Steps for calculating the novelty value of a bar

3. To generate the dataset for our task, we pick the bars with a local maximum as the positive

samples. To filter out minor deviations, e.g., bar 18 in 3.7, we put a threshold of 0.1 on

the peak’s height difference from its neighbours. A maximum of 10% of total bars in

a song with these characteristics are selected as the positive samples to filter out weak

ones. Same number of bars from the rest of the non-peak regions are selected as negative

samples.

Using the procedures outlined above, we were able to identify 146432 bars in the dataset

that contained improvisations out of a total of 1779712 bars, accounting for ≈ 8.2% of the total

bars.

3.5 Analysis

Figure 3.5 shows different ways in which the basic drum pattern can change after the fill. The

basic drum pattern can mainly exhibit one of these 3 changes in its groove pattern:

1. Continue with the same groove after the fill as before. This is usually done in the middle
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Figure 3.7: Novelty Function Plot for the given Drum Track

of long stanzas.

2. Slightly modify the previous groove pattern. This is usually done when the next stanza

exhibits a similar tone as the previous one.

3. Completely modify the previous groove pattern. This is done when the following stanza

has a huge tonal difference from the current stanza.

Using Equation 3.1, we can quantify the difference in the basic drum pattern. From the

bars identified in the above step, we pick the basic drum pattern bars just before and just after

the drum fill bar and calculate the distance between them. Figure 3.8 shows the distribution

of these bar similarity values. They are divided into three equal regions corresponding to the

three types of changes in the groove. This indicates that the majority of the time (61%) there

is a very small change in the drum groove pattern. The groove present in Figure 3.5a, b, and c

correspond to the first, second and third region respectively.
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Figure 3.8: Distribution of bar similarity values between the bars just before and just after the

bar of improvisation
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Chapter 4

Proposed Generation Model

The overview of the proposed system is shown in Figure 4.1. We start by generating a

basic drum pattern for the given melodic accompaniment input. This is done using an encoder-

decoder based transformer model. After training this model, we find that the model was not

able to capture the regions of improvisations and fills and mainly generated a basic repeating

drum pattern. To counter this, we develop an improvisation location detection model and an

improvisation generation model which takes in the melodic accompaniment and percussion ac-

companiment generated by the first model to locate and generate a fill or improvisation. We also

develop a novelty function to capture the dissimilarity of a drum bar compared to its neighbours

Figure 4.1: Overview of the proposed system
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and use it to locate the improvised bars. Details of each of the models are provided in subse-

quent sections. Our models are trained for 300 epochs with Adam optimization [42] starting

with a learning rate of 1e-4 and decaying it till 1e-6. All the setup was carried out using the

Tensorflow [43] framework.

4.1 Common Modules

Before we dive deep into the model architectures, there are a few common modules used by all

the models. These modules are being discussed:

4.1.1 Embedding Module

Inputs to our models are either a pianoroll matrix or a series of tokens (serial grid format). Pi-

anoroll representation is a highly sparse representation with only a few MIDI pitches/instruments

active at any given timestep. To reduce this sparsity and learn the inter-instrument and inter-

note dependencies we use a 2-layer ReLU activated [44] MLP as our embedding module for

the pianoroll. For the serial grid input, we use a token embedding layer to learn the token

dependencies.

4.1.2 Position Encoder

In the self-attention mechanism of a Transformer, there is no notion of the ordering of input

tokens. As all of our models use a Transformer encoder, we need a position encoder module

to embed the positional information of different input vectors. We concatenate the sinusoidal

positional representations [26] with the input vectors and use a dense layer to project them back

into the original dimension space to keep the same input dimension.
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4.2 Basic Drum Pattern Generation

Figure 4.2: Basic Drum Pattern Generation Model

Basic drum pattern refers to a drum pattern without the fills and improvisations. We train

a Transformer sequence to sequence model [26] to try to replicate the drum pattern (including

the fills and improvisations) (Figure 4.2). For this task, we use the serial grid representation of

percussion track. This converts our task to a sequence translation task [45, 46] which allows

us to explore the existing literature on it. Multi-state decoding of the output would be required

in the case of a pianoroll representation of a percussion recording, which is a separate research

area.

For our task, we give the melodic accompaniment as the input to the encoder and the

shifted percussion accompaniment tokens to the decoder branch. Both the inputs are first passed

through the embedding module (1024 and 128-dimension dense layers) followed by the posi-

tion encoder. The embedded inputs are passed through 2 layers of encoder/decoder module

with 128-dimensional latent space and 8 attention heads. At the output, we have 18 neurons

corresponding to the 16 drum instruments, silence token, and shift token. The output decod-

ing can be done in various ways: greedy decoding, simple sampling, temperature sampling,
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nucleus sampling, and top-k sampling [34]. In our work, we test greedy sampling and simple

sampling. With the greedy decoding method, we select the token with the maximum probability

at each step of decoding, while with the simple sampling method, we select the tokens from the

distribution predicted by the model.

When we inspect the drum samples generated by this model, we find that the model can

generate a good repeating drum pattern that maintains the timing structure of the music, but

fails to detect and generate improvisations. Also, the model maintains a highly similar drum

pattern throughout the 11 bars with very small deviations due to output decoding strategies.

The above model is evaluated with the negative log-likelihood (NLL) values over the train

and the validation set. As the model outputs a distribution over the 18 output tokens, there are

multiple ways to decode it. We test the greedy method of decoding, where the token with the

maximum probability is selected at every step, and the simple sampling method. The model

is trained using categorical cross-entropy loss and achieved an NLL of 0.108 and 0.112 on the

train and validation split, respectively.

4.3 Improvisation Location Detection

Wei et al. [9], Lettner et al. [47] and Paulus et al. [48] noted that the self-similarity matrix

(SSM) of the melody is structurally similar to the SSM of the drums. They used the melody

SSM to generate drum SSM which was further used to generate the drum bars. To build on this

hypothesis, if just given with melody, we should be able to predict the locations of improvisa-

tions and possibly even generate them. We train the following 4 models to test whether we can

detect the location of improvisations from melody only:

4.3.1 Model 1: Simple SSM Classifier

This model, is based on the idea that a simple melody SSM should be enough to detect the

locations of improvisations. The input to this model is the SSM matrix of the melody pianoroll.

The SSM is calculated at bar level making it a 11 (bars) × 11 (bars) matrix. This is then
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Figure 4.3: (a) Melody SSM Classification Model Architecture; (b) Melody Feature Classifier;

(c); (d) MLP Feature Extraction Model (d) Transformer Encoder Feature Extraction Model

flattened and passed through 3 layers MLP with 256-128-2 neurons (Figure 4.3a). The outputs

are softmax activated to represent the positive and negative classes. The model is trained on

categorical cross-entropy loss using an Adam optimizer for 60 epochs. As this is a classification

task, the accuracy, precision, and recall are measured. The results are presented in Table 4.1.

4.3.2 Model 2: Melody Feature Classifier

In this model we extract features from raw melody pianoroll using a Transformer Encoder and

pass these features through classification layers to predict the location of improvisations. The
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self-attention mechanism of the transformers have been shown to extract good high level fea-

tures from raw data of various modalities [49, 50]. Hence a sub beat level the feature extraction

is being done using the transformer encoder blocks with 12 attention heads, 64 dimensions em-

bedding and 512-dimension feedforward layer. The classification layers are 2 layer MLP with

1024-2 dense layers. The output is again softmax activated to represent the positive and nega-

tive classes. The model is trained on Huber loss [51] as it’s robust to outliers and less sensitive

to noise to 300 epochs.

4.3.3 Melody SSM Feature Classifier

On the lines of observation made by [9, 47, 48], if the melody SSM captures the location of

improvisations, then it should be able to make the predictions. But from results of Model 1

(Table 4.1), it can be seen that an SSM calculation from raw melody does not help. We test 3

different methods of feature extraction from raw melody for SSM calculation.

1. Simple MLP Feature Extraction (Model 3a): We test a simple 3 layer MLP module to

extract features from the bar level representation of raw melody (Figure 4.3c). To get a bar

level representation, we simply concatenate the vectors of all the timesteps in a bar. This

results in a 11 × 8192 shaped input matrices. The first 2 layers (512-128 dimensions)

of this MLP are ReLU activated while the third layer (128 dimensions) is tanh activated.

A dot product of these features is then taken to generate the SSM structure. This is then

flattened and passed through the classification layer similar to the ones used in Model 1

4.3.1. Results of this model can be found in table 4.1.

2. Bar Level Transformer Encoder (Model 3b): Instead of a simple MLP structure to

extract features from melody, we use 2 layers of transformer encoders for this task. The

melody representation is first changed to bar level representation as discussed above.

This bar level representation is sent to an embedding module with 1024-128 dimensions,

followed by a positional encoder block. These position encoded vectors are sent to 2

layers of transformer encoders with 8 attention heads, 128 embedding dimension and 256

feedforward dimensions. The features extracted from these blocks are then passed to

another tanh activated dense layer with 128 dimension. A dot product of the extracted
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features is taken to get an SSM structure which is flattened and passed to the classification

module used in Model 1 4.3.1. Results of this model can be found in table 4.1.

Model Precision Recall Accuracy

Model 1 50.0 50.0 50.0

Model 2 79.1 79.4 79.3

Model 3a 50.0 50.0 50.0

Model 3b 82.1 82.1 82.1

Table 4.1: Results of different models for the improvisation location detection task

From the Table 4.1 it can be seen that Model 3b i.e., the Bar level transformer encoder

performs the best closely followed by the model 2. Other models do not show any performance

improvements compared to a random guessing model. While these two models are based on

2 different intuitions for prediction, they both have a very close performance. This also shows

that melody can be used to predict the locations of improvisation in the drum track.

4.4 Improvised Bar Generation

The final step in our system is the generation of improvised bars. To achieve this we use the

architecture shown in 4.4. We provide 11 bar melodic accompaniment and percussion accom-

paniment as the input to the model. During the training phase, the percussion accompaniment is

the original percussion track, whereas, during the evaluation/generation phase, the percussion

track generated by our first stage model (section 4.2) is used. As these generated drum samples

are prone to errors, we simulate this by adding random noise to the input while training 3.3.2.

The 6th bar in the percussion sample (middle bar) is the target bar and is masked while giving

as the input. To increase the robustness of this model, we use the supplementary data augmen-

tation methods 3.3.2. As there are two different input branches, we mask out one of the inputs

randomly 20% of the time.

We generate a summary vector of both the melodic accompaniment and the percussion

accompaniment inputs. Both are first passed through an embedding layer followed by a posi-

tion encoder module. This is then passed through 2 layers of transformer encoders with 128
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Figure 4.4: Improvised Bar Generation Model Architecture

dimensional latent space and 8 attention heads. We add skip connections to ease the flow of

gradients [52]. To generate the summary vector for each input, we use a global averaging tech-

nique. These two vectors are concatenated and passed through a decoder structure which looks

at the concatenated vector to generate the improvised drum bar. We test the following decoder

architectures with our model:

1. MLP: A 3-layer dense network with 2048-2048-512 neurons is used. The final layer is

sigmoid activated. The outputs are reshaped to 32 (timesteps) × 16 (percussion instru-

ments) to get the improvised bar.

2. MLP mixer: MLP mixers [53] are simple alternatives to convolution and self-attention.

They are based on multi-layered perceptrons applied across either temporal dimension or

feature dimension. It mixes tokens, or in other words, facilitates communication across

different patches in the same channel.

3. Conv1d: A simple conv1d architecture with blocks of 2 layers of conv1d followed by

upsampling.
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Figure 4.5: (a) MLP decoder architecture (b) MLP Mixer decoder architecture (c) Conv1D

architecture

We treat the prediction of the improvised bars as a regression problem. We train it with

Huber loss as it is less sensitive to outliers. We do not use cross-entropy loss for generation

firstly purely as a design choice, and intuitively each of the time step tokens in the prediction

within a bar lack probabilistic interpretation. We monitor and report the accuracy, precision,

and recall of the models. As the distribution of 0s and 1s is not uniform in the predicted sample,

F1 score provides a better insight in the performance of the models. From Table 4.2 it can be

seen that a simple 3 layered MLP decoder can to perform better than the complex MLP mixer

and Conv1D architecture.

Precision Recall Accuracy F1 Score

MLP 82.9 70.3 79.0 76.0

MLP Mixer 83.5 42.1 86.0 56.0

Conv 1D 53.1 70.3 86.1 60.5

Table 4.2: Results of various decoder architectures used in the improvisation generation task

Given a simple drum pattern played by a real drummer, we utilise the following criteria to

determine how much musically significant fills/improvisations we can generate (calculated on

the test set):
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Figure 4.6: (a) Stroke Location Error Distribution (b) Instrument Count Error Distribution

• Stroke Locations Error: This checks the number of locations where any instrument

onset should have occurred according to a real drum track but were not present in the

predicted bar. From Figure 4.6a it can be seen that while a majority of them have zero

error, there is still room for improvement.

• Instrument Count Error: This checks if our model was able to understand the inter-

instrument dependencies and replicate them. From Figure 4.6b it can be seen that about

≈ 80% of the bars have less than 1 instrument difference. This implies that our model

was able to understand and replicate the dependencies of various instruments.
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Chapter 5

Evaluation of Generated Samples

To evaluate the quality of the generated PA pattern of the proposed system, we conduct

both objective and subjective tests with:

1. O: Original MIDI drum patterns that are present in the MIDI files in the dataset.

2. P1: The basic drum pattern generated by our Basic Drum Pattern Generation model

(section 4.2).

3. P2: The final drum patterns with fills and improvisations generated by the complete

system.

5.1 Basic Filtration of Output

As the output of the Basic Drum Pattern Generation model is decoded using a sampling-based

method, it is prone to errors. Sampling a wrong output at any step can lead to degeneration. To

reject such samples, we apply the following filters:
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1. Getting a complete silence after a couple of drum beats was the most common observed

output degeneration pattern. To filter out such samples, we check for the total number of

silence bars in the generated outputs and reject all the generated patterns with more than

4 silence bars.

2. While sampling from a distribution, states with lower probability can also be sampled. If

an unexpected state is decoded at any given step, it will lead to a deviation of the drum

density of future steps too. To reject such samples, we calculate the density of each bar

in the 11-bar drum sample and put a cap of 5 on its standard deviation.

After applying the aforesaid filtration to 8192 P1 drum samples generated by simple sam-

pling method, we are left with 3762 samples for further evaluation.

5.2 Objective Evaluation

Evaluation of generative music systems faces harder challenges than that of image generation

systems (Briot et al. [54]). To evaluate our models, we design several metrics that can be com-

puted for both the real and the generated data. We compare the basic drum patterns generated

by the sequence to sequence Transformer model with the ground truth patterns for rhythmic

consistency and to evaluate how good the patterns were musically. We also do a separate eval-

uation of the generated fill bars to get a better understanding of the system. Finally, we request

a few experts to give their insights and comments on the generated drum samples.

5.2.1 Evaluation of Basic Drum Pattern

5.2.1.1 Onset Distribution in a Bar

A basic requirement that any drum pattern generation system must fulfill is the rhythmic po-

sitioning of onsets. Generally, in a bar of rock music, the first beat (downbeat) and the third

beat have similar instrumentation, featuring a hi-hat and kick drum onset. Beats 2 and 4, com-

monly referred to as the backbeat, include a hi-hat and snare drum onset. While the quarter
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notes are accented across the bar, 8th notes are accented within the beat interval. We check the

distribution on onsets in a bar to understand if the model was able to learn the importance of

this grid structure. From Figure 5.1, we can observe that the model was able to emphasis the

start and mid of all the beats, which mainly correspond to the locations of the 8th note. This is

particularly interesting because we didn’t provide any explicit information regarding bar/beat

boundary but the model was still able to extract it from the raw data.

Figure 5.1: Distribution of onset position in a bar in O and P1. Accents at the start and middle

of a beat imply an 8th note pattern

5.2.1.2 Pattern Matching

We perform a one-to-one comparison of the P1 outputs against their target drum pattern to un-

derstand how closely are the patterns matched with the original drum sample using the following

metrics:

1. Instrument Count (IC) Error: Instrument count is defined as the total number of dis-

tinct instruments used in a bar. To get a better understanding of whether our model can

replicate the behavior of multi-instrument dependency, we calculate the error of IC in the

generated sample with that present in the real drum track for the same MA. We observe

that in about 75.8% of the drum bars, we can replicate the IC, while in 99.3% of the bars

our model was off by at most 1 instrument.
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Figure 5.2: (a) Distribution of Instrument Count Error and (b) Distribution of Stroke Count

Error in O and P1 samples

2. Stroke Count (SC) Error: Stroke count is defined as the total number of timesteps with

the onset of any percussion instruments. To understand how well our model was able to

replicate the net strokes in a bar, we calculate the error of SC in the generated sample with

that present in the real drum track for the same MA. Figure S2 shows the distribution of

this error. We can see that while most of the time the model was able to generate a similar

stroke count as the ones present in the dataset, some bars had a significantly larger error.

The model compensated for an increase in SC for one bar by slightly lowering the SC at

some other bar, on average.

5.2.1.3 Rhythmic Consistency

Another important aspect that needs to be considered while generating drum patterns is to have

a rhythmic consistency. This means that the generated drum bars should have a consistent drum

pattern and there needs to be a consistency in the onset locations across the bars. We evaluate

these aspects of the generated drum pattern using the following metrics:

1. Inter-onset Interval (IOI): Inter-onset interval in the symbolic domain is the number of

timesteps between two consecutive onsets. We measure the IOI on the dataset and the

generated samples and compute its distribution and find that the overlapping area of the

two is 93.2%.

Pattern Consistency: For consecutive bar pairs, we calculate the distance between the
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Figure 5.3: (a) Distribution of Inter Onset Interval and (b) Distribution of pattern consistency

across the O and P1 drum samples

drum patterns using the equation 3.1. The distribution of the bar distances is shown in

Figure 5.4b. We can see that the generated drum bars are more or less similar to each

other with some minor deviations due to the sampling decoding method. The overlapping

area of the two distributions is 80.4%.

5.2.2 Evaluation of Bars with Fills/Improvisations

To understand how well were our models able to capture the fills/improvisations, we use the

following evaluation methods on the improvised O and P2 bars:

Figure 5.4: (a) Onset position distribution for fill/improvised bars only in O and P2 samples (b)

Distribution of change in Instrument Count with respect to the previous bar
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1. Onset Position: Figure S5 shows the distribution of onset location of percussion in-

struments across the improvised bar. We observe a slightly higher proportion of 16th

note patterns in the improvised O bars as compared to onset distribution across the non-

improvised bars seen in Figure S1. We can see that P2 is largely able to capture this

behavior as well.

2. Instrument Count (IC) Change: Generally during a fill/improvisation, an additional

instrument is introduced. IC change is measured as the change in IC of the improvised

bar compared to the previous bar. Figure S6 shows the distribution of IC change. The

overlapping area of the two distributions is 87.9%, This demonstrates that our model was

able to capture the general trend of IC change.

5.3 Subjective Evaluation

To evaluate the perceptual quality of the generated outputs, we present the generated samples

to trained musicians. We select 7 MA tracks and their corresponding PA from the 3762 filtered

samples. For each of the MA tracks, we have an O, P1, and P2 drum sample. We make 3

pairs i.e. O & P1; P1 & P2; O & P2 for each MA-PA track and present these 21 pairs to two

guitarists and a multi-instrumentalist with experience ranging from 5 to 10 years. They were

asked to provide detailed comments on the drum pattern in terms of timing, appropriateness of

fills, and coherence of the PA with MA. During the comparison, they were asked not to focus

on the audio quality or loudness.

In terms of coherence of melody and the generated drum track, while the majority of the

time O drum track was preferred over P1, P2 was able to gain significantly more votes over O

as compared to P1 over O. The basic drum pattern with no fills/improvisation in P1 gave it a

monotonous feel and it was one of the major reason for selecting O over P1. While comparing

P1 and P2, in a few samples it was difficult to choose a better version due to the difference

of just one bar. Most of the time, P2 was selected as the fills imparted a lively feel to the

accompanying drums. However, in a few cases, it was also reported that the fill introduced by

P2 felt a bit unnecessary.
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5.4 Sample Results

Figure 5.5: Example 1: Pianoroll of O, P1, and P2 drum pattern for the same Melodic Accom-

paniment
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Figure 5.6: Example 2: Pianoroll of O, P1, and P2 drum pattern for the same Melodic Accom-

paniment

Figure 5.7: Example 3: Pianoroll of O, P1, and P2 drum pattern for the same Melodic Accom-

paniment
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Chapter 6

Summary and Future Works

We have successfully shown a method to produce coherent drums accompaniment with

improvised bars by conditioning on a given melodic accompaniment. A novel BERT-inspired

infilling architecture is proposed, along with a self-supervised improvisation locator. By learn-

ing, where and how to improvise, our evaluations indicate improved generation quality. Thus

with a two-step approach, we mitigate the biases and shortcomings that exist with current ma-

chine learning architectures. The system can further be improved by learning optimal sampling

techniques, which remains an open problem. The findings of our work can yield advances in

other domains such as natural language processing and computer vision due to the ubiquity of

these architectures. Finally, extending these beyond midi-like events and solving this at scale

remains an exciting and challenging problem ahead of us. This work highlights a serious draw-

back of traditional language-based generators, which have shown promise in a lot of different

fields, yet they fail to capture subtle musical signals, where they are often sparsely occurring

in otherwise repetitive and common patterns. In the future this work can be extended in the

following directions:

• Increasing Context: The first and most important extension of this work would be of

increasing the context size of melodic and percussion accompaniment tracks.
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• Change in Basic Drum Pattern: In this work, we have focused on generating fills when

the basic drum pattern does not change before and after the fill. From section 3.5, we

know that while happens a majority of the time, there is still a large proportion where

there is a change in the basic drum pattern. Due to the current step-by-step generation

process, we can tackle only the fills where there are no changes in the basic drum patterns.

• Improving Individual Modules: We test multiple model architectures for each individ-

ual module used in the work. Yet, there are thousands of untested architecture which

could give a better performance and bridge the gap in the model’s learning.

• End-to-End Trainable System: Our current system has 3 different modules, each with

a specific purpose. Each of the modules is trained individually by the signals extracted

from the dataset. Having a system that can be trained end-to-end to mitigate these biases

in the dataset would be of tremendous help even for the NLP tasks.

• Output sampling strategies: Decoding from the output distribution is an open challenge

even for NLP tasks. While sampling methods have shown promising results, they tend to

degenerate after a certain duration and Likelihood maximizing decoding methods cause

repetitions and overly generic results [34].

• Coherence Evaluation: As any generative model is capable of producing thousands of

samples for a given input, it would be interesting to be able to rank them for the user to

select from. This is a challenging task as the model needs to be able to understand deeper

structures of music and match them. This can be extended to other domains like question

answering, text summarization, etc.

• Loss function formulation: The loss function plays a vital role in the learning of a

model. Having a good loss function formulation that can help eliminate the biases in the

dataset is a challenging task.

• Drum Velocity Representation: Velocity is the representation of the loudness of the

beat. It plays a crucial role in expressing feelings during a song. Our current approach

represents only the ON/OFF state of the drum instruments.
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